tiep-tuyen-cua-duong-tron-tai-diem-tren-duong-tron Phương trình tiếp tuyến của đường tròn và Các dạng bài tập

Phương trình tiếp tuyến của đường tròn tại một điểm trên đường tròn

Tiếp tuyến của đường tròn ((C) : (x-a)^{2} + (y-b)^{2Lambda } = R^{2}) tại điểm (M_{0}(x_{0},y_{0})) thuộc đường tròn (C) có phương trình:

((x – a)(x_{0}- a) + (y – b)(y_{0}- b) = R^{2})

Nếu phương trình đường tròn (C) được biểu diễn dưới dạng:

(x^{2}+y^{2}-2ax-2by+c=0) thì phương trình tiếp tuyến đường tròn (C) là:

(xx_{0}+yy_{0}-a(x+x_{0})-b(y+y_{0})+c=0)

tiep-tuyen-cua-duong-tron-tai-diem-tren-duong-tron Phương trình tiếp tuyến của đường tròn và Các dạng bài tập

Ví dụ 1: Viết phương trình tiếp tuyến của của đường tròn (C) tại điểm M(3;4) biết đường tròn có phương trình là: ((x−1)^{2}+(y−2)^{2}=8)

Hướng dẫn:

Đường tròn (C) có tâm là điểm I(1;2) và bán kính (R=sqrt{8})

Vậy phương trình tiếp tuyến với (C) tại điểm M(3;4) là: (3−1)(x−3)+(4−2)(y−4)=0

(Leftrightarrow) 2x+2y−14=0

Ví dụ 2: Viết phương trình tiếp tuyến của đường tròn ((C) : x^{2} + y^{2} +2x – 4y – 4 = 0) tại điểm (M_{0}(-1;5))

Hướng dẫn:

Dễ thấy phương trình đường tròn (C) được biểu diễn thành:

(x^{2} + y^{2} – 2.(-1).x – 2.2.y = 0)

(Rightarrow) phương trình tiếp tuyến là:

(x.(-1) + y.5 – (-1).(x – 1) – 2.(y + 5) – 4 = 0)

(Leftrightarrow -x + 5y + x – 1 – 2y – 10 – 4 = 0)

(Leftrightarrow y = 5)

Phương trình tiếp tuyến của đường tròn đi qua một điểm nằm ngoài đường tròn

Cho đường tròn (C) có tâm I, bán kính R và điểm (M(x_{0},y_{0})) nằm ngoài đường tròn (C). Đường thẳng (Delta) đi qua M là tiếp tuyến của (C) khi và chỉ khi: (d(I,Delta ) = R)

tiep-tuyen-duong-tron-di-qua-mot-diem Phương trình tiếp tuyến của đường tròn và Các dạng bài tập

Cách làm: Viết phương trình của đường (Delta) đi qua (M(x_{0},y_{0}))

(y – y_{0} = m(x – x_{0}) Leftrightarrow mx – y – mx_{0} + y_{0} = 0) (1)

Cho khoảng cách từ tâm I của đường tròn (C) tới (Delta) bằng R

(d(I,Delta )=R)

Ta tính được m, thay m vào (1) ta được phương trình tiếp tuyến.

Chú ý: Ta luôn luôn tìm được hai đường tiếp tuyến đi qua một điểm cho trước nằm ngoài đường tròn.

hai-tiep-tuyen-di-qua-mot-diem-ngoai-duong-tron Phương trình tiếp tuyến của đường tròn và Các dạng bài tập

Phương trình tiếp tuyến song song với đường thẳng có hệ số góc k

Cho đường tròn (C) viết tiếp tuyến (Delta) của (C) biết tiếp tuyến song song với một đường thẳng có hệ số góc k.

Cách làm: Phương trình của đường thẳng (Delta) có dạng:

y = kx + m (m chưa biết)

(Leftrightarrow kx – y + m = 0)

Cho khoảng cách từ tâm I đến (Delta) bằng R: (d(I,Delta )=R) ta tìm được m.

Thay m vừa tìm được vào phương trình y = kx + m ta được phương trình tiếp tuyến cần tìm.

tiep-tuyen-cua-duong-tron-song-song-voi-mot-duong-khac Phương trình tiếp tuyến của đường tròn và Các dạng bài tập

Trên đây là tổng hợp cách viết phương trình tiếp tuyến của đường tròn của DINHNGHIA.COM.VN, nếu có thắc mắc hay băn khoăn các bạn bình luận bên dưới chúng mình sẽ giải đáp ạ! Cảm ơn các bạn, nếu thấy hay thì chia sẻ với bạn bè nhé!

Tác giả: Việt Phương

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *